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The Problem Corner

Edited by Pat Costello

The Problem Corner invites questions of interest to undergraduate stu-

dents. As a rule, the solution should not demand any tools beyond calcu-

lus and linear algebra. Although new problems are preferred, old ones of

particular interest or charm are welcome, provided the source is given. So-

lutions should accompany problems submitted for publication. Solutions

of the following new problems should be submitted on separate sheets be-

fore January 1, 2010. Solutions received after this will be considered up

to the time when copy is prepared for publication. The solutions received

will be published in the Spring 2010 issue of The Pentagon. Preference

will be given to correct student solutions. Af�rmation of student status

and school should be included with solutions. New problems and solu-

tions to problems in this issue should be sent to Pat Costello, Department

of Mathematics and Statistics, Eastern Kentucky University, 521 Lancaster

Avenue, Richmond, KY 40475-3102 (e-mail: pat.costello@eku.edu)

NEW PROBLEMS 641-648

Problem 641. Proposed by Lisa Kay, Eastern Kentucky University,

Richmond, KY.

Suppose that there are �ve students enrolled in a chemistry class. They

will have to complete �ve lab assignments. For each lab assignment, four

of the students will work in two pairs while one student works indepen-

dently. Each student will work independently for exactly one of the �ve

labs. Each student will work with each of the other four students exactly

once. How many different lab schedules are possible?

Problem 642. Proposed by Jose Luis Diaz-Barrero, Universitat

Politecnica de Catalunya, Barcelona, Spain.

Let a; b; c be the lengths of the sides of a triangle ABC with heights ha,
hb, and hc, respectively. Prove that
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Problem 643. Proposed by Jose Luis Diaz-Barrero, Universitat

Politecnica de Catalunya, Barcelona, Spain.

The equation x3 � 2x2 � x + 1 = 0 has three real roots a > b > c.
Find the value of ab2 + bc2 + ca2.

Problem 644. Proposed by Andrew Cusumano, Great Neck, NY.

Find two primes whose reciprocals repeat after exactly 7 decimal places.

Problem 645. Proposed by Ben Thurston, Florida Southern College,

Lakeland, FL.

What is the expected number of rolls of a fair die required to have all

six faces come up at least once?

Problem 646. Proposed by Duane Broline and Gregory Galperin

(jointly), Eastern Illinois University, Charleston, Illinois.

Suppose that n is an odd integer. Show that
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Problem 647. Proposed by Panagiote Ligouras, Leonardo da Vinci High

School, Noci, Italy.

Let a, b, and c be the sides, and ma, mb, and mc the medians of a

triangle ABC. Prove or disprove that
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Problem 648. Proposed Ovidiu Furdui, University of Toledo, Toledo, OH.

Let k > 1 be a real number. Find the value of
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dx, where

fag = a�bac denotes the fractional part of a. [For example, f1:9g = 0:9.]
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SOLUTIONS TO PROBLEMS 624-631

Problem 624. Proposed by Duane Broline and Gregory Galperin

(jointly), Eastern Illinois University, Charleston, Illinois.

Given a tetrahedron, prove that two triangles can be formed such that

the lengths of the six triangle sides equal the lengths of the six edges of the

tetrahedron. Prove that the converse is not true.

Solution by the proposers.

Suppose the six edges of the tetrahedron cannot be arranged to form

two triangles. Let the vertices be labeled so that AB is the longest edge of
the tetrahedron. If

AB < AC +AD;
then AB, AC, and AD can be arranged into one triangle and 4BCD is
a triangular face of the tetrahedron so we would have two triangles. This

means that

AB � AC +AD:
Similarly,

AB � BC +BD:
Therefore,

2AB � AC +AD +BC +BD:
However,4ABC is a face of the tetrahedron, so

AB < AC +BC:

Since4ABD is also a face,
AB < AD +BD:

Adding these two inequalities gives

2AB < AC +BC +AD +BD:

This contradicts the previous inequality. Hence the six edges can be arranged

to form two triangles.

To prove that the converse is not true, consider the two triangles one

being equilateral whose sides have length 1 and the other having sides of

length 100, 102, 104. With these lengths, we can form only one triangle

with the length 104 edge as one side of the triangle. But each edge of a

tetrahedron is an edge of two of the triangles formed by the faces. There-

fore, it is not possible to arrange these six edges into a tetrahedron.
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Problem 625. Proposed by Duane Broline and Gregory Galperin

(jointly), Eastern Illinois University, Charleston, Illinois.

All of the integers from 1 through 999999 are written in a row. All of

the zeros are erased. Each of the remaining digits is separately inverted

and the sum, S, is computed. Let T be the sum of the reciprocals of the
digits 1 through 9. Show that S=T is an integer and �nd it.

Solution by the proposers.

Consider the one million six-digit sequences, xyztuv; where x, y, z,
t, u, and v are between 0 and 9, inclusive. In each of these one million
sequences, let each digit be replaced by that digit plus 1 modulo 10 (so

that 9 is replaced by 0). The resulting list of sequences is the same, except

for order, as the initial list. Thus each digit occurs the same number of

times among the one million six-digit sequences. As there are 6,000,000

digits, each of the ten digits occurs 600,000 times. Now suppose all of

the zeroes are erased from among the one million six-digit sequences. The

digits that remain will be the same as those that would be left if all integers

from 1 through 999,999 were written in a row and then all of the zeroes

were erased. In each case, each of the digits 1 through 9 occurs 600,000

times. Hence S = (600; 000)T and

S=T = 600; 000:

Solution by Samantha Corvino (student), Slippery Rock University,

Slippery Rock, PA.

Let Sn be the sum of the reciprocals of the nonzero digits of the positive
integers less than 10n. Clearly S1 = T . For two-digit numbers, each
nonzero digit appears ten times in the tens column and 9 times in the ones

column. Thus,

S2 = 10T + 9S1 + S1 = 10T + 10S1:

Similarly,

S3 = 100T + 9S2 + S2 = 10
2T + 10S2;

and in general

Sn = 10
n�1T + 10Sn�1.

One can easily verify that the solution to this difference equation has the

form

Sn = n10
n�1T;

from which it can be deduced that S = S6 = 600; 000T and

S=T = 600; 000:
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Also solved by Carl Libis, University of Rhode Island, Kingston, RI,

Taylor Franzman (student), California State University-Fresno, Fresno,

CA, Erik Murphy (student), Waynesburg University, Waynesburg, PA,

Parker Richey (student), Northeastern Oklahoma State University,

Tahlequah, OK.

Problem 626. Proposed by David Rose, Florida Southern College,

Lakeland, FL.

Two values are randomly selected from the uniform distribution on the

interval (0; L). They create three subintervals of the interval [0; L]. What
is the probability that the lengths of the three subintervals are the lengths

of the sides of some triangle?

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO.

Regard the two randomly-selected values as coordinates of an ordered

pair (x; y) in the xy-plane. The feasible region is the square with vertices
(0; 0), (L; 0), (0; L), and (L;L), together with its interior.

Case 1 Suppose 0 < x � y < L. In this case, the three segment lengths
are x, y � x, and L � y. These lengths will be side lengths for a triangle
if and only if they satisfy all three inequalities required by the triangle

inequality:

L� y < x+ (y � x) = y () y > L=2

y � x < L� y + x() y < L=2 + x

x < L� y + y � x = L� x() x < L=2

The solution to this system of inequalities corresponds to the upper trian-

gular shaded region below.

Case 2 Suppose 0 < y < x < L. The segment lengths are y, x� y, and
L � x, with those corresponding to sides of a triangle when the x and y
values are in the lower triangular shaded region below.

LL/2

L/2

L

y
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Since the total shaded area represents 14 of the total area of the square, the

probability that the lengths constructed are the sides of a triangle is 14 .

Also solved by Lisa Kay, Eastern Kentucky University, Richmond, KY,

Russell Euler and Jawad Sadek, Northwest Missouri State University,

Maryville, and the proposer.

Problem 627. Proposed by Ken Dutch, Eastern Kentucky University,

Richmond, KY.

Suppose that the artist Krypto wants to form several rows of blocks 10

feet wide. He only wants to use two types of blocks - one type is one foot

wide and the other is two feet wide. He wants to form a row for every

possible pattern of blocks (order matters). How many rows will he have to

make? How many of each type of block will he have to use?

Solution by Alycia Butchelli and Karissa King (students), Slippery Rock

University, Slippery Rock, PA.

There are only six basic combinations of the blocks as described below.

Each must be permuted. Given that there are repeated elements in each

combination, we obtain:

m d P

� � � � � � � � � � 10 0 10!
10! = 1

� � � � � � � � 8 1 9!
8!1! = 9

� � � � � � 6 2 8!
6!2! = 28

� � � � 4 3 7!
4!3! = 35

� � 2 4 6!
2!4! = 15

0 5 5!
5! = 1

;

wherem is the number of monominoes, d is the number of dominoes, and
P is the number of permutations.
There are 89 permutations, so there are 89 rows needed. To �nd the

number of each individual block type being used, multiply the number of

arrangements for each combination by the number of each type of block

in the combination and add. The number of monominoes used is 420. The

number of dominoes used is 235.

Also solved by Carl Libis, University of Rhode Island, Kingston, RI and

the proposer.
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Problem 628. Proposed by Jose Luis Diaz-Barrero, Universitat

Politecnica de Catalunya, Barcelona, Spain.

Let Fn be the n
th Fibonacci number, de�ned by F1 = F2 = 1 and

Fn = Fn�1 + Fn�2 for n � 3. Prove that
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Solution by the proposer.

Applying the Cauchy-Schwarz inequality to the vectors
�!u = (F1; F2; :::; Fn) and

�!v = (tanhF1; tanhF2; :::; tanhFn) and tak-
ing into account that

F 21 + F
2
2 + � � �+ F 2n = FnFn+1;

as can be easily proved, we get
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Applying the Cauchy-Schwarz inequality to the vectors
�!u = (F1; F2; :::; Fn) and �!v = (sechF1; sechF2; ::: sechFn), we have
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Since tanh2 Fk + sech
2 Fk = 1 (in general, tanh2 x + sech2 x = 1), we

obtain, after adding the previous expressions,
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from which the desired conclusion follows. Equality holds when n = 1.
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Problem 629. Proposed by Jose Luis Diaz-Barrero, Universitat

Politecnica de Catalunya, Barcelona, Spain.

Let a, b, c be real numbers, with a; b; c � 1. Prove that
a1=a

b1=b + c1=c
+

b1=b

a1=a + c1=c
+

c1=c

b1=b + a1=a
< 2:

Solution by the proposer.

First, we will see that with segments of lengths a1=a, b1=b, c1=c, it is
always possible to build a triangle. In fact, we have [a] � a < a + 1.

Applying Bernoulli's inequality yields 2a � 2[a] = (1 + 1)[a] � 1 + [a] >
a � 1 from which we get 2 > a1=a � 1. Likewise 2 > b1=b � 1 and
2 > c1=c � 1 and

a1=a + b1=b � 1 + 1 = 2 > c1=c

b1=b + c1=c � 1 + 1 = 2 > a1=c

c1=c + a1=a � 1 + 1 = 2 > b1=b:

Therefore it is always possible to build a triangle with the lengths a1=a,
b1=b, c1=c. Now we have

a1=a + b1=b >
�

a1=a + b1=b + c1=c
�

=2

b1=b + c1=c �
�

a1=a + b1=b + c1=c
�

=2

c1=c + a1=a �
�

a1=a + b1=b + c1=c
�

=2:

Inverting the preceding inequalities, and multiplying by c1=c, a1=a, b1=b,
respectively, we obtain

c1=c

a1=a + b1=b
<

2c1=c

a1=a + b1=b + c1=c

a1=a

c1=c + b1=b
<

2a1=a

a1=a + b1=b + c1=c

b1=b

a1=a + b1=b
<

2b1=b

a1=a + b1=b + c1=c
:

Adding these inequalities and rearranging terms gives the desired conclu-

sion.
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Problem 630. Proposed by the editor.

Suppose that logx y+logy x is a positive integer. Prove that (logx y)
n+

�

logy x
�n
is an integer for all positive integers n.

Solution by Daniel Parkes and Kevin Rose (students), California State

University-Fresno, Fresno, CA.

Let s = logy x and t = logx y. Then y
s = x and xt = y. By substitu-

tion,
�

xt
�s
= ys = x, so xst = x1. Equating exponents, st = 1, so that s

and t are inverses. We proceed by induction. The smallest case is n = 1
which is the same as the original assumption. Assume that sk + tk is an
integer for all k with 1 � k � n. Consider the case of sn+1 + tn+1. We
break into two cases:

Case 1 n+ 1 even, so n+ 1 = 2u for some integer u. Then

(s+ t)n+1 = sn+1+a1s
nt+a2s

n�1t2+ � � �+ausutu+ � � �+a1stn+tn+1;
with the ai being binomial coef�cients. Since st = 1, we have

(s+ t)n+1 = sn+1 + a1s
n�1 + a2s

n�3 + � � �+ au + � � �
+a1t

n�1 + tn+1

= sn+1 + a1
�

sn�1 + tn�1
�

+ a2
�

sn�3 + tn�3
�

+ � � �
+au + t

n+1:

By the induction hypothesis, sn�1+ tn�1, sn�3+ tn�3, ... are all integers.
Since all of the binomial coef�cients are integers and (s+ t)n+1 is an
integer, sn+1 + tn+1 is an integer.

Case 2 n+ 1 odd, so n = 2u for some integer u. Then

(s+ t)n+1 = sn+1 + a1s
nt+ a2s

n�1t2 + � � �+ ausu+1tu + ausutu+1
+ � � �+a1stn + tn+1

= sn+1 + a1s
n�1 + a2s

n�3 + � � �+ aus+ aut
+ � � �+a1tn�1 + tn+1

= sn+1 + a1
�

sn�1 + tn�1
�

+ a2
�

sn�3 + tn�3
�

+ � � �+au (s+ t) + tn+1:
As in case 1, all of the middle terms on the right are integers, and the left

side is an integer, so sn+1 + tn+1 is an integer.
Thus by mathematical induction, (logx y)

n+
�

logy x
�n
is an integer for

all positive integers n.

Also solved by Joan Bell, Northeastern Oklahoma State University,

Tahlequah, OK, Russell Euler and Jawad Sadek, Northwest Missouri

State University, Maryville, MO, and the proposer.
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Problem 631. Proposed by the editor.

The Columbus State University Problem of the Week for March 10,

2008 asked for the three smallest positive integers that could not be written

as the difference of two positive prime numbers. These turn out to be

primes. Prove that there are in�nitely many positive primes that cannot be

written as the difference of two positive prime integers. Also prove that

there are in�nitely many pairs of positive integers (n; n+ 2) that cannot
be written as the difference of two positive primes.

Solution by the proposer.

Let p be a prime with p � 3 (mod10). Then p is an odd prime. If p
can be written as the difference of two positive primes, say p = q� r, then
q > p and so q is odd. Since p and q are odd, r would need to be even.
The only even prime is 2 which forces q = p + 2 � 5 (mod10) which is
impossible if q is prime. Hence p cannot be written as the difference of two
primes. By Dirichlet's Theorem on Primes in Arithmetic Progressions we

know there are in�nitely many primes congruent to 3 (mod10) and none
of these can be written as the difference of two primes.

For the second part of the problem, let n be a prime with n � 3
(mod70). So n is odd. If n can be written as the difference of two positive
primes, say n = q � r, then q would be odd, r = 2, and q = n + 2 � 5
(mod70) which is impossible for a prime q. Hence n cannot be written
as the difference of two primes. In addition, if n + 2 can be written as
the difference of two primes, say q � r, then q would be odd, r = 2, and
q = (n + 2) + 2 � 7 (mod70) which is also impossible. So neither
n nor n + 2 can be written as the difference of two primes. Since 3 is
relatively prime to 70, Dirichlet's Theorem on Primes in Arithmetic Pro-

gressions guarantees that there are in�nitely many primes n � 3 (mod70).
So there are in�nitely many pairs of positive integers (n; n+2) that cannot
be written as the difference of two positive primes.


