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Eulerian Numbers and Relations to
Number Triangles and Infinite Series

James Gillin student

KS Delta

Washburn University
Topeka, KS 66621

Abstract

Infinite series of the form ∑
∞
i=0 inxi, where n ∈ N, have a closed form solu-

tion that involves the Eulerian numbers, which are the coefficients of the Eulerian
polynomials that were studied by Leonhard Euler. This paper will show the proof
of this theorem and also a construction of two different number triangles that use
the Eulerian numbers and have similarities to Pascal’s Triangle.

Introduction

In combinatorics, The Eulerian numbers are defined as the number of permu-
tations of the numbers 1 to n with k descents, or the number of elements that are
smaller than the previous element. The notation A(n,k) will be used to denote the
Eulerian number for the permutations of 1 to n with k descents. Also, for values
of A(n,k) where k≥ n > 0 the Eulerian number is defined to be 0. These numbers
are easy to compute by hand for small n, and to demonstrate we will look at the
permutations from 1 to 3.

Example 1. Permutations for 1 to 3.

There are some important characteristics to notice from this example. First,
the total number of permutations from 1 to n will always be equal to n!, so in this
example n= 3 and 1+4+1=6=3!. Also, when there are no descents, or when k = 0,
there is only one permutation and this is the same for the two descents case, or
when k = n− 1. This will always be the case no matter what our choice for n is,
since the permutations of 1 to n will always have one that is always increasing in
value and one that is always decreasing in value. For the descents between 0 and
n− 1, we will need to use a recursive formula to find all the values when n gets
large.
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Theorem 1. For 1≤ k≤ n−1, the recursive formula for the Eulerian numbers is

A(n,k) = (n− k)A(n−1,k−1)+(k+1)A(n−1,k).

Proof. Let W = (w1w2w3 . . .wn) be an arbitrary permutation from 1 to n and set
the descents to be 1/lek ≤ n− 1. If we remove the largest element, n, from the
permutation then the descents of W either stay the same or decrease by 1.

Case 1: Descents stay the same. If n is the last element of the permutation or
if W = (w1w2 . . .xny . . .wn), where x > y. In this case there are k places to remove
n without changing the descent count plus the case of the last element, so we have
(k+1)A(n−1,k) options.

Case 2: Descents decrease by 1. If n is the first element of the permutation or
if W = (w1w2 . . .xny . . .wn), where x < y. In this case there are n− k−1 places to
remove n that would decrease the descents by 1 plus the case of the first element,
so we have (n− k)A(n−1,k−1) options.
Combining these two cases we have (n− k)A(n− 1,k− 1)+ (k+ 1)A(n− 1,k),
which is the formula that was to be shown. �

The Pattern to the Infinite Series

We will now highlight Infinite Series of the form ∑
∞
i=0 inxi, where n ∈ N, and

show the patterns that arise from solving the closed form solutions for specific n.
The first case will be when n= 0, and now the series is ∑

∞
i=0 xi. This is a geometric

series with the first term equal to 1, which has the well-known formula, 1
1−x for

|x| < 1. For the n = 1 case, this requires manipulation of the terms of the series
∑

∞
i=0 ixi. It is possible to rearrange the order of this infinite series, since we are

only concerned with the values of x that make the series converge. Here is what
the manipulation looks like:

Example 2. . Derivation of closed form solution of ∑
∞
i=0 ixi.

S1 =
∞

∑
i=0

ixi = 0+1x1 +2x2 +3x3 + . . .

= x+ x2 + x3 + x4 + . . .+1−1+ x2 +2x3 +3x4 + . . .

= S−1+ x
(
1x1 +2x2 +3x3 +4x4 + . . .

)
,

where S is the geometric series x+ x2 + x3 + x4 + . . .+1 = 1
1−x .

Then
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S1 = S−1+ xS1

⇒ S1− xS1 =
1

1− x
−1

⇒ S1− xS1 =
x

1− x

⇒ S1(1− x) =
x

1− x

⇒ S1 =
x

(1− x)2 .

A similar but more tedious process can be repeated to find the closed forms for
the series when n = 2,3,4, . . . and so on. Here are the closed forms for n = 1,2,3,
and 4:

S1 =
∞

∑
i=0

ixi =
x

(1− x)2

S2 =
∞

∑
i=0

i2xi =
x2 + x

(1− x)3

S3 =
∞

∑
i=0

i3xi =
x3 +4x2 + x

(1− x)4

S4 =
∞

∑
i=0

i4xi =
x4 +11x3 +11x2 + x

(1− x)5 .

The important parts to look at from these solutions are the patterns that arise.
First, each has a power of (1− x) in the denominator that is equal to the power
of the i term plus one. Also, the numerator involves a polynomial where the
power of the x’s ranges from the power of the i term to one. The key observa-
tion is that the coefficients of these polynomials are the Eulerian numbers. In
fact, the expressions in the numerator of each solution are called Eulerian poly-
nomials. These polynomials were studied by Leonhard Euler in his 1755 book
Institutiones Calculi Differentialis (485-486). The definition for Eulerian polyno-
mials that we will use, as defined by Richard P. Stanley in Enumerative Combi-
natorics is,“Ad (x) = ∑wεSd

x1+des(w) = ∑
d
k=1 A(d,k)xk, where A(d,k) are the Eu-

lerian numbers for permutations with exactly k− 1 descents, Gd is the group of
permutations from 1 to d, and des(w) is the number of descents of the arbitrary
permutation w.” (39). Stanley also provides a recurrence relation for these poly-
nomials that he proves on page 40, and the recurrence is “A0 (t) = 1, An (t) =
t (1− t)A′n−1 (t)+An−1 (t)(nt), n≥ 1” (40).

Proof of the Closed Form Solution to the Infinite Series

We now have all the tools necessary to prove the conjecture of this paper. This
proof is adapted from Enumerative Combinatorics by Stanley that uses induction
and the recursive formula for Eulerian polynomials.
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Theorem 2. ∀n∈N, ∑
∞
i=0 inxi = An(x)

(1−x)n+1 , where An(x) =∑
n
k=1 A(n,k)xk for n≥ 1.

Proof. By induction. When n = 0,∑∞
i=0 xi = A0(x)

(1−x)0+1 = 1
1−x , so the base case is

true.
Now suppose it is true that ∑

∞
i=0 ikxi = Ak(x)

(1−x)k+1 , for some k ∈ N. Then, if we take
the derivative and multiply by x on both sides we get:

d
dx

(
∞

∑
i=0

ikxi)x =

(
d
dx

Ak(x)

(1− x)k+1

)
x

⇒
∞

∑
i=0

ik+1xi =
(A′k (x)(1− x)k+1 +Ak(x)(k+1)(1− x)k)x

(1− x)2k+2

=
x(1− x)A′k(x)+Ak(x)(k+1)x

(1− x)k+2 =
Ak+1(x)

(1− x)k+2 .

The statement is now shown to be true for the k + 1 case and the original
statement follows from induction. �

Number Triangle Constructions

The Eulerian numbers can be arranged in a triangular array that is similar to
Pascal’s triangle, which uses binomial coefficients. This triangular array is called
Euler’s triangle, and the recursive formula for generating Eulerian numbers will
be useful for generating each entry. Each row of the triangle will correspond to
a specific permutation of the numbers 1 to n starting with n = 1, and each entry
in the row will count the number of descents, k, ranging from 0 to n−1. We will
now show a picture of the triangle for the first seven rows, and a picture that will
help visualize how to use the recursive formula to generate each entry.

Example 3. First 7 rows of Euler’s triangle:
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Example 4. Visualization of how to generate each entry in Euler’s triangle.

Legend

In this example we have row n = 5 and entry k = 1. The left arrow is 5-1=4 and
the right arrow is 1+1=2. The n−1,k−1 entry is 1 and the n−1,k entry is 11, so
we take (1x4)+(2x11)=4+22=26. One similarity Euler’s triangle has with Pascal’s
triangle is that the sum of each row equals a factorial number, while in Pascal’s
triangle each row equals a power of two.

The second number triangle we will look at is called Gillin’s triangle. The
first four rows of this triangle are identical to Euler’s triangle but are generated
differently. It also shares the property with Euler’s triangle that each row adds
to n! beginning with row n = 1. The first and last entry in each row is always 1,
and to get the other entries we add the n− 1,k− 1 entry and the n− 1,k entry
plus the factorial of the n− 1 row. This formula can be written recursively as,
G(n,k) = G(n−1,k−1)+G(n−1,k)+(n−1)!, for 0 < k < n−1.
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Example 5. First 7 rows of Gillin’s triangle:

References
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Alternative Proof of the Weighted Mean
Value Theorem of Integral Calculus

Ankush Kumar Parcha, student
Indira Gandhi Nation Open University, New Delhi, India

Toyesh Prakash Sharma, student
Department of Mathematics, Agra College, Agra, India

Abstract

In this article we present an easy proof of the Weighted Mean Value Theorem
of integral calculus using Cauchy’s Mean Value Theorem of differential calculus.

The Proof

In integral calculus there we have two mean value theorems. Here we provide
an easy and pleasant proof of a related result, the Weighted Mean Value Theorem
of integral calculus.

Theorem. If f ,g : [a,b]→ R are continuous functions with g(x) > 0 on (a,b),
then ∃c ∈ (a,b) such that

∫ b
a f (x)g(x)dx = f (c)

∫ b
a g(x)dx.

Proof. Define F.G : [a,b]→ R by F(x) =
∫ x

0 f (x)g(x)dx and G(x) =
∫ x

0 g(x)dx.
Note that F and G are continuous on [a,b] and differentiable on (a,b) and that
G′(x) 6= 0 ∀x ∈ (a,b) . By invoking Cauchy’s Mean Value Theorem [1] we have:

∃c ∈ (a,b) such that
d
dx

∣∣∣∣
x=c

F(x) =
F(b)−F(a)
G(b)−G(a)

d
dx

∣∣∣∣
x=c

G(x)

⇒ d
d

∣∣∣∣
x=c

∫ x

0
f (x)g(x)dx =

F(b)−F(a)
G(b)−G(a)

d
dx

∣∣∣∣
x=c

∫ x

0
g(x)dx

⇒ f (c)g(c) =
F(b)−F(a)
G(b)−G(a)

g(c)

⇒ f (c) =
F(b)−F(a)
G(b)−G(a)

.

Here G(b)−G(a) 6= 0 since g(x) > 0 ∀x ∈ (a,b) . Then, using the definitions of
F(x) and G(x), we have:

f (c)
(∫ b

0
g(x)dx−

∫ a

0
g(x)dx

)
=
∫ b

0
f (x)g(x)dx−

∫ a

0
f (x)g(x)dx.

As a < b then ∫ b

0
g(x)dx =

∫ a

0
g(x)dx+

∫ b

a
g(x)dx
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and ∫ b

0
f (x)g(x)dx =

∫ a

0
f (x)g(x)dx+

∫ b

a
f (x)g(x)dx.

Then

f (c)
(∫ a

0
g(x)dx+

∫ b

a
g(x)dx−

∫ a

0
g(x)dx

)
=
∫ a

0
f (x)g(x)dx+

∫ b

a
f (x)g(x)dx−

∫ a

0
f (x)g(x)dx

⇒ f (c)
∫ b

a
g(x)dx =

∫ b

a
f (x)g(x)dx.

�

References

[1] J. B. Diaz, D. Výborný: On some mean value theorems of the differential
calculus. Bull. Austral. Math. Soc. 5(1971), 227–238
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Hausdorff Sequential Boundary
Jared Ohler, student

Brendon LaBuz

PA Mu

Saint Francis University
Loretto, PA 15940

Abstract

The sequential ends of a metric space were defined in Sequential ends of met-
ric spaces by M. DeLyser, B. LaBuz, and M. Tobash and proved to be a coarse
invariant. We can see that the real line and the ray are not coarsely equivalent since
they have a different number of sequential ends, but the analog in two dimensions
is not as easily handled. Both the Euclidean plane and half-plane have a single
sequential end so this invariant does not distinguish between these two spaces.

Here we define a new sequential boundary that makes the plane (and half-
plane) have infinitely many boundary points. We hope this invariant can be used
to distinguish between the plane and the half-plane. In that direction we introduce
a structure on the boundary. We define a coarse-invariant partial order and show
that the boundary of the plane has a greatest element and infinitely many minimal
elements.

Introduction

Coarse geometry is the study of metric spaces from a “zoomed out” point of
view, so two spaces that look the same at a “great distance” are actually equivalent.

That is the intuitive idea of coarse equivalence. The technical definition is
as follows. Given two metric spaces X and Y , we say the function f : X → Y is
coarse if it is both bornologous and proper. A function is bornologous if for every
N > 0 there is an M > 0 such that if d(x,y) ≤ N, then d( f (x), f (y)) ≤ M. The
function is proper if inverse images of bounded sets are bounded. We would then
say X and Y are coarsely equivalent if there are coarse functions f : X → Y and
g : Y → X such that g◦ f and f ◦g are close to idX and idY respectively. In other
words, the sets {d(x,g◦ f (x))} and {d(y, f ◦g(y))} are bounded. If a function is
a coarse function we will sometimes refer to it as a map.

To understand and visualize this idea of coarse equivalence, consider the met-
ric spaces Z and R (Figure 1). Define f :Z→R to be the map n 7→ n and g :R→Z
to be the map x 7→ bxc. We are able to find that f and g are coarse functions and
f ◦ g and g ◦ f are close to their respective identities, thus Z and R are coarsely
equivalent.

In [2] it was noted that when a sequence (si) in a metric space X is viewed
as a function s : N→ X , the function being bornologous is equivalent to it being



Fall 2023 13

Z

R

Figure 1: The integers are coarsely equivalent to the real numbers.

a K-sequence for some K > 0. A sequence (si) is a K-sequence if d(si,si+1)≤ K
for all i ∈ N. It is also mentioned that the function being proper is equivalent to it
going to infinity. A sequence (si) goes to infinity if d(s1,si)→ ∞. We denote that
a sequence (si) goes to infinity by si→ ∞.

That paper took a new view of ideas from earlier works [3], [4], and [5] where
a coarse invariant was developed. That invariant was able to distinguish between
the real line and a ray since the real line has two “ways of going to infinity” while
the ray has just one.

The two-dimensional analog to the line and the ray is the Euclidean plane
and the half plane. We conjecture that the Euclidean plane and half plane are not
coarsely equivalent, but when one checks the sequential boundary of these spaces
all that is found is a single point—only one way of going to infinity. In order to
distinguish between these two spaces we need an invariant that detects some more
detail about them.

Hausdorff Sequential Boundary

We consider (si) to be a coarse sequence in X if there is a coarse function
s : N→ X such that s(i) = si for all i ∈ N. The sets B̄(x,R) are the closed balls
{y ∈ X : d(x,y)≤ R}.

Definition 1. Given two coarse sequences (si) and (ti) in a metric space X, we say
(si) is Hausdorff equivalent to (ti) if there exists R > 0 such that {si} ⊂

⋃
B̄(ti,R)

and {ti} ⊂
⋃

B̄(si,R).

Figure 2 shows two sequences that are Hausdorff equivalent. We call it Haus-
dorff equivalent because the definition is of the same flavor as that of the Hausdorff
distance between metric spaces [1, Definition 5.30].

We define the Hausdorff sequential boundary of X to be the set of Hausdorff
equivalence classes of coarse sequences in X , denoted as ∂H(X). We denote the
Hausdorff equivalence class of a coarse sequence (si) by [(si)].

To show Hausdorff equivalence is an equivalence relation, we need to show
it is reflexive, symmetric, and transitive. It is obvious from the construction
of the definition that it is reflexive and symmetric. To show Hausdorff equiva-
lence is transitive, let (si) be Hausdorff equivalent to (ti) and let (ti) be Hausdorff
equivalent to (qi). Then there exist R1,R2 > 0 such that {si} ⊂

⋃
B̄(ti,R1) and

{ti} ⊂
⋃

B̄(si,R1), and {ti} ⊂
⋃

B̄(qi,R2) and {qi} ⊂
⋃

B̄(ti,R2). We want to show
(si) is Hausdorff equivalent to (qi). Let qi ∈ {qi}. We know qi ∈ B̄(t j,R2) for some
j ∈N. We also know t j ∈ B̄(sk,R1) for some k ∈N. Then qi ∈ B̄(sk,R1+R2) since
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t5

t3

t1
s1

s2

s3

s4

s5

s6

s7

s1

s4

s7

t1

Figure 2: {si} ⊂
⋃

B̄(ti,n) and {ti} ⊂
⋃

B̄(si,n)

d(qi,sk) ≤ d(qi, t j)+ d(t j,sk). Then {qi} ⊂
⋃

B̄(si,R1 +R2). A symmetric argu-
ment gives us the other inclusion, {si} ⊂

⋃
B̄(qi,R1 +R2).

We begin by showing that the Hausdorff boundary of the real line contains
two elements. In other words, there are “two ways of going to infinity.” In order
to get that result we give a condition for a coarse sequence in R to be Hausdorff
equivalent to the sequence of natural numbers.

Given a coarse sequence (si) in a metric space X , without loss of generality
we can choose any point as the initial point of the sequence since given any x ∈ X ,
the sequences s1,s2,s3, . . . and x,s2,s3, . . . are Hausdorff equivalent.

Proposition 1. Let (si) be a coarse sequence in R. Then [(si)] = [(n)] if and only
if (si) is eventually positive.

Proof. We assume that (si) and (n) start at 0.
(⇒) Suppose [(si)] = [(n)]. Then there exists R > 0 such that {si} ⊂

⋃
B̄(n,R)

and {n} ⊂
⋃

B̄(si,R). Since si → ∞ there exists M ∈ N such that for all i ≥ M,
d(0,si) = |si| > R. Then si > 0 for all i ≥M (if not, then si < 0 for some i ≥M
and then d(n,si)> R for all n ∈ N, a contradiction).

(⇐) Suppose (si) is eventually positive. Then there exists M1 ∈ N such that
si > 0 for all i≥M1. Since (si) is coarse, it is a K-sequence for some K > 0. Also,
since (si) is proper, it goes to infinity so there exists M2 > 0 such that d(0,si)> K
for all i≥M2. Set M = max{M1,M2}.

First we show {n}n≥sM ⊂
⋃

B̄(si,K). Let n≥ sM. Since si→∞, there is t ≥M
such that d(0,si) > n for all i ≥ t. Then si > n for all i ≥ t. Let r be the smallest
i such that si > n. We show n ∈ B̄(sr,K). We know sr−1 ≤ n. We also know
sr− sr−1 ≤ K, so sr−K ≤ sr−1. Then

sr−K ≤ sr−1 ≤ n < sr < sr +K.
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Thus {n}n≥sM ⊂
⋃

B̄(si,K). Also {0,1,2, . . . ,bsMc} ⊂ B̄(0,bsMc}) so the entire
{n} ⊂

⋃
B̄(si,max{K,bsMc}).

For the other inclusion, set R = max{|s1|, |s2|, . . . , |sM1−1|}. Then we have
{s1,s2, . . . ,sM1−1}⊂ B̄(0,R). Also, {si}i≥M1 ⊂

⋃
B̄(n,1) so {si}⊂

⋃
B̄(n,max{R,1}).

�

Theorem 3. |∂H(R)|= 2.

Proof. First we show that there are two distinct boundary points in ∂H(R), [(n)]
and [(−n)]. Suppose to the contrary that (n) is Hausdorff equivalent to (−n).
Then {n} ⊂

⋃
B̄(−n,N) and {−n} ⊂

⋃
B̄(n,N) for some N ∈ N. Then N + 1 ∈

B̄(−n,N) for some n ∈N. Then d(N +1,−n) = |N +1− (−n)|= N +1+n≤ N,
a contradiction.

Now we must show there are only two boundary points in ∂H(R). Let (si) be
a coarse sequence in R. We can assume s1 = 0. We want to show that (si) can
only be equivalent to either (n) or (−n). Since (si) is coarse, it is a K-sequence
for some K > 0. Also, since (si) is proper, it goes to infinity so there exists M > 0
such that d(0,si)> K for all i≥M. We consider two cases.

Case 1: sM ≥ 0. We show si > 0 for all i≥M; then [(si)] = [(n)] by Proposi-
tion 1. We know d(0,sM)> K, which means

d(0,sM) = |sM|> K

sM > K

sM−K > 0.

Since (si) is a K-sequence, we know

|sM+1− sM| ≤ K

−K ≤ sM+1− sM ≤ K

0 < sM−K ≤ sM+1 ≤ sM +K.

Thus sM+1 > 0. Therefore si > 0 for all i≥M by induction.
Case 2: sM < 0. We can prove that (si) is Hausdorff equivalent to (−n) if and

only if (si) is eventually negative in a similar manner to how we proved Propo-
sition 1. Then we can show (si) is Hausdorff equivalent to (−n) in a way that is
analogous to Case 1. �

Now we show that the Hausdorff boundary is a coarse invariant. To that end
we show that a coarse function induces a function on the boundary.

Lemma 1. Suppose f : X → Y is a coarse function. Suppose [(si)], [(ti)] ∈ ∂H(X)
with [(si)] = [(ti)]. Then [( f (si))] = [( f (ti))].

Proof. Suppose [(si)], [(ti)] ∈ ∂H(X) with [(si)] = [(ti)]. Then there exists R > 0
such that {ti} ⊂

⋃
B̄(si,R) and {si} ⊂

⋃
B̄(ti,R). To show [( f (si))] = [( f (ti))], we

find R′> 0 such that { f (ti)}⊂
⋃

B̄( f (si),R′) and { f (si)}⊂
⋃

B̄( f (ti),R′). Since f
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is bornologous, there exists an R′ > 0 such that if d(x,y)≤ R, then d( f (x), f (y))≤
R′. Let i ∈ N. Since {ti} ⊂

⋃
B̄(si,R), there exists j ∈ N such that ti ∈ B̄(s j,R).

Then d(ti,s j)≤ R so d( f (ti), f (s j))
≤ R′ and f (ti) ∈ B̄( f (s j),R′). Symmetrically, we can use the fact that {si} ⊂⋃

B̄(ti,R) to obtain { f (si)} ⊂
⋃

B̄( f (ti),R′). Thus ( f (si)) is Hausdorff equivalent
to ( f (ti)). �

Theorem 4. If X and Y are coarsely equivalent, then |∂H(X)|= |∂H(Y )|.

Proof. We have coarse functions f : X→Y and g : Y → X such that f ◦g and g◦ f
are close to the identities. We define f ∗ : ∂H(X)→ ∂H(Y ) by setting f ∗([(si)]) =
[( f (si))] for all [(si)] ∈ ∂H(X). From Lemma 1, we know f ∗ is well-defined. We
want to show that f ∗ is bijective.

First, to show f ∗ is injective, suppose [(si)], [(ti)]∈ ∂H(X) and ( f (si)) is Haus-
dorff equivalent to ( f (ti)). We show [(si)] = [(ti)]. From Lemma 1, we obtain
[(g ◦ f (si))] = [(g ◦ f (ti))]. Since g ◦ f is close to the identity of X , there exists
K > 0 such that d(g ◦ f (si),si) ≤ K for all i ∈ N. Thus {si} ⊂

⋃
B̄(g ◦ f (si),K).

Likewise, {g ◦ f (si)} ⊂
⋃

B̄(si,K). Thus [(si)] = [(g ◦ f (si))]. Symmetrically
[(ti)] = [(g◦ f (ti))]. Therefore [(si)] = [(ti)].

Next, to show f ∗ is surjective, let [(si)] ∈ ∂H(Y ). Then [g(si)] ∈ ∂H(X). Simi-
larly, [ f (g(si))]∈ ∂H(Y ). Since f ◦g is close to the identity, we have d( f (g(si)),si)≤
K for some K > 0. Therefore { f (g(si))}⊂

⋃
B̄(si,K) and {si}⊂

⋃
B̄( f (g(si)),K).

Thus, f ∗([g(si)]) = [(si)]. �

From Theorem 3 we know |∂H(R)| = 2. A similar argument shows that
|∂H(R+)| = 1. Therefore the real line and a ray are not coarsely equivalent since
their Hausdorff sequential boundaries have different cardinalities.

Coarse sequences in the real plane

We characterize those coarse sequences in R2 that are Hausdorff equivalent
to straight sequences. Given a slope m ∈R, the coarse sequence ((n,mn)) goes to
infinity along the line y = mx in the positive x-direction.

Proposition 2. Let m ∈ R. A coarse sequence ((xi,yi)) in R2 is Hausdorff equiv-
alent to the sequence ((n,mn)) if and only if it satisfies the following conditions.

1. There exists M > 0 such that |yi−mxi| ≤M for all i ∈ N.

2. The sequence (xi) is Hausdorff equivalent to (n) in R.

Proof. We assume that ((xi,yi)) starts at (0,0).
(⇒) First, suppose ((xi,yi)) is Hausdorff equivalent to ((n,mn)). Then there

exists R> 0 such that {(xi,yi)}⊂
⋃

B̄((n,mn),R) and {(n,mn)}⊂
⋃

B̄((xi,yi),R).
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x

y

M

−M

((xi,yi))
((n,mn))

Figure 3: ((xi,yi)) is Hausdorff equivalent to ((n,mn))

Since {(xi,yi)} ⊂
⋃

B̄((n,mn),R), given i ∈ N, (xi,yi) ∈ B̄((k,mk),R) for some
k ∈ N so d((xi,yi),(k,mk))≤ R. Then

|yi−mk|=
√
(yi−mk)2

≤
√
(xi− k)2 +(yi−mk)2

≤ R.

Similarly, |xi− k| ≤ R. Then

|mxi−mk|= |m||xi− k| ≤ |m|R

so
|yi−mxi| ≤ |yi−mk|+ |mk−mxi| ≤ R+ |m|R.

We use Proposition 1 to show (xi) is Hausdorff equivalent to (n) in R. Thus
we need to show (xi) is a coarse sequence and that it is eventually positive. We
know that ((xi,yi)) is a coarse sequence. That is, it is bornologous and proper.
Since it is bornologous, there exists K > 0 such that d((xi,yi),(xi+1,yi+1)) ≤ K
for all i ∈ N. Then

d(xi,xi+1) = |xi− xi+1|

=
√

(xi+1− xi)2

≤
√

(xi+1− xi)2 +(yi+1− yi)2

= d((xi,yi),(xi+1,yi+1))≤ K

for all i ∈ N so (xi) is bornologous.
To show that (xi) is proper, suppose to the contrary that there exists T > 0

such that for all N ∈ N, there exists i ≥ N such that |xi| ≤ T . In that case, |yi| ≤
|yi−mxi|+ |mxi| ≤M+ |m|T so

d((0,0),(xi,yi))≤ |xi|+ |yi| ≤ T +M+ |m|T,
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a contradiction since (xi,yi)→ ∞.
Now we show (xi) is eventually positive. Recall that we know {(xi,yi)}

⊂
⋃

B̄((n,mn),R). Since ((xi,yi)) is proper, there exists N > 0 such that d((0,0),(xi,yi))>
R+R

√
1+m2+1 for all i≥N. Suppose to the contrary that xi≤ 0 for some i≥N.

We show that (xi,yi) /∈ B̄((n,mn),R) for all n ∈ N. Let n ∈ N. We consider two
cases on the size of n.

Case 1: n > R. Then

d((xi,yi),(n,mn))≥ |xi−n|= n− xi ≥ n > R.

Case 2: n≤ R. We have

d((xi,yi),(n,nm))+d((n,nm),(0,0))≥ d((xi,yi),(0,0)).

Then

d((xi,yi),(n,mn))≥ d((xi,yi),(0,0))−d((n,mn),(0,0))

= d((xi,yi),(0,0))−n
√

1+m2

≥ d((xi,yi),(0,0))−R
√

1+m2

≥ R+R
√

1+m2 +1−R
√

1+m2 > R.

In both cases we have (xi,yi) /∈ B̄((n,mn),R).
(⇐) Next, we suppose that there exists an M > 0 such that |yi−mxi| ≤M for all
i ∈ N and (xi) is Hausdorff equivalent to (n) in R. We want to show ((xi,yi)) is
Hausdorff equivalent to ((n,mn)).

First we show {(xi,yi)} ⊂
⋃

B̄((n,mn),R) for some R > 0. By Proposition 1
we know that (xi) is eventually positive, that is, there exists T > 0 such that xi > 0
for all i≥ T . It suffices to show {(xi,yi)}i≥T ⊂

⋃
B̄((n,mn),

1+M+ |m|). Suppose i≥ T . Then |xi−bxic| ≤ 1 so |mxi−mbxic| ≤ |m| and

|yi−mbxic| ≤ |yi−mxi|+ |mxi−mbxc| ≤M+ |m|

so

d((xi,yi),(bxc,mbxc)) =
√

(xi−bxic)2 +(yi−mbxic)2

≤ |xi−bxic|+ |yi−mbxic|
≤ 1+M+ |m|.

Now we show that {(n,mn)} ⊂
⋃

B((xi,yi),R) for some R > 0. Let n ∈ N.
Since {xi} is Hausdorff equivalent to (n) there is S > 0 such that {n} ⊂

⋃
B(xi,S).

Thus |xi− n| ≤ S for some i ∈ N. Now |yi−mxi| ≤M and |mxi−mn| ≤ |m|S so
|yi−mn| ≤ |yi−mxi|+ |mxi−mn| ≤M+ |m|S and

d((xi,yi),(n,mn))≤ |xi−n|+ |yi−mn| ≤ S+M+ |m|S.

�
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A Partial Order on the Boundary

Our motivation for defining the Hausdorff sequential ends was to find a way
to distinguish between the Euclidean plane and half plane. We know that the real
line and ray are not coarsely equivalent. That was shown in [2] and again after
Theorem 4 using the Hausdorff sequential boundary.

We encounter difficulties in the analog in two dimensions. Using the sequen-
tial ends from [2] we find that both the plane and the half plane have a single
end so the invariant is inconclusive. Using the Hausdorff sequential boundary de-
fined here we have the opposite issue; both the plane and half plane have infinitely
many Hausdorff boundary points. One would guess that the cardinalities are also
the same so again the invariant is inconclusive. One way to proceed is to put some
structure on the boundary that is invariant under coarse equivalence. We do that
here by defining a partial order on the boundary.

Recall that a relation ≤ on a set A is a partial order if it is reflexive, anti-
symmetric, and transitive. The relation is reflexive if a ≤ a for all a ∈ A. It is
anti-symmetric if a ≤ b and b ≤ a implies a = b. Finally, it is transitive if a ≤ b
and b≤ c implies a≤ c.

Definition 2. Given two coarse sequences (si) and (ti) in a metric space X, we
say [(si)]≤ [(ti)] if there exists R > 0 such that {si} ⊂

⋃
B̄(ti,R).

To show this definition gives a partial order, we need to show it is reflexive,
anti-symmetric, and transitive. It is obvious from the definition that it is reflexive.
To show the definition is anti-symmetric, let [(si)], [(ti)] ∈ ∂H(X) with [(si)] ≤
[(ti)] and [(ti)] ≤ [(si)]. This condition is exactly that of Definition 1 so [(si)] =
[(ti)]. Transitivity of this partial order is just half of the transitivity of Hausdorff
equivalence that we proved after Definition 1.

It turns out that ∂H(R2) has a greatest element but no least element (later on
we show that it has infinitely many minimal elements). Recall an element z of a
partially ordered set A is the greatest element if z≥ a for all a ∈ A. Note greatest
elements are always unique. To get the greatest element of ∂H(R2) we define a
sequence that spirals to fill out the entire integer lattice.

Definition 3. Let (zi) be the sequence in R2 that starts at (0,0), then continues in
a square:

(1,0),(1,1),(0,1),(−1,1),(−1,0),(−1,−1),(0,−1),(1,−1),(2,−1).

Then we continue by going around in the next square by doing

(2,0),(2,1),(2,2),(1,2),(0,2),(−1,2),(−2,2),

(−2,1),(−2,0),(−2,−1),(−2,−2),

(−1,−2),(0,−2),(1,−2),(2,−2),(3,−2).

This pattern is then continued for each subsequent square, as seen in Figure 4.
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x

y

z1 z2

z49

Figure 4: (zi): The greatest element in R2

The spiral (zi) gives the greatest element [(zi)] in ∂H(R2) since for any coarse
sequence (si) in R2, {si} ⊂ R2 =

⋃
B̄(zi,1).

Proposition 3. A sequence (ti) is Hausdorff equivalent to (zi) if and only if
⋃

B̄(ti,R)=
R2 for some R > 0.

Proof. (⇒) Suppose (ti) is Hausdorff equivalent to (zi). Then there exists T > 0
such that {ti} ⊂

⋃
B̄(zi,T ) and {zi} ⊂

⋃
B̄(ti,T ). We show

⋃
B̄(ti,T + 1) = R2.

Let (x,y) ∈ R2. Then (x,y) ∈ B̄(z j,1) for some j ∈ N. We know z j ∈ B̄(tk,T ) for
some k ∈ N. Thus (x,y) ∈ B̄(tk,T +1).

(⇐) Suppose
⋃

B̄(ti,R)=R2. We know
⋃

B̄(zi,1)=R2. Thus {ti}⊂
⋃

B̄(zi,1)
and {zi} ⊂

⋃
B̄(ti,R). �

We now show that each [(n,mn)] ∈ ∂H(R2) is minimal. Note that by the char-
acterization in Proposition 2 it is obvious that these elements are all distinct for
distinct “slopes” m.

An element k of a partially ordered set A is a minimal element if a < k is not
true for all a∈ A. In other words, k is minimal if for all a∈ A, a≤ k implies a = k.

Lemma 2. If [((xi,yi))]≤ [((n,mn))] in R2, then there exists an M > 0 such that
|yi−mxi| ≤M for all i ∈ N and (xi) is Hausdorff equivalent to (n) in R.

Proof. Notice in the proof of Proposition 2, in the forward direction, that we only
used the first inclusion {(xi,yi)} ⊂

⋃
B̄((n,mn),R). �

Proposition 4. For all m ∈ R, the boundary point [((n,mn))] of R2 is minimal.
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Proof. We show that [((xi,yi))]< [((n,mn))] cannot happen. Suppose [((xi,yi))]≤
[((n,mn))]. Then by Lemma 2 there is an M > 0 such that |yi−mxi| ≤M for all
i ∈ N and (xi) is Hausdorff equivalent to (n). Then by Proposition 2 [((xi,yi))] =
[((n,mn))]. �

We believe there are many more minimal elements in ∂H(R2), including the
one indicated in Figure 5.

Figure 5: Another sequence giving a minimal element of ∂H(R2)

Finally, we note that the partial order on the Hausdorff boundary is a coarse
invariant. Suppose two coarse functions f : X → Y and g : Y → X form a coarse
equivalence between X and Y . Then if [(si)], [(ti)]∈ ∂H(X) with [(si)]≤ [(ti)], then
f ∗([(si)])≤ f ∗([(ti)]) by the argument in the proof of Lemma 1. Also, since g◦ f
is close to the identity, for all [(si)] ∈ ∂H(X), g∗ ◦ f ∗([(si)]) = [(si)]. Thus g∗ is the
inverse of f ∗ and it follows that for all [(si)], [(ti)] ∈ ∂H(X), [(si)] ≤ [(ti)] if and
only if f ∗([(si)])≤ f ∗([(ti)]). Thus ∂H(X) and ∂H(Y ) are order isomorphic.
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The Problem Corner
Edited by Pat Costello

The Problem Corner invites questions of interest to undergraduate students.
As a rule, the solution should not demand any tools beyond calculus and linear
algebra. Although new problems are preferred, old ones of particular interest or
charm are welcome, provided the source is given. Solutions should accompany
problems submitted for publication. Solutions of the following new problems
should be submitted on separate sheets before January 31, 2025. Solutions re-
ceived after this will be considered up to the time when copy is prepared for
publication. The solutions received will be published in the Fall 2024 issue of The
Pentagon. Preference will be given to correct student solutions. Affirmation of
student status and school should be included with solutions. New problems and
solutions to problems in this issue should be sent to Pat Costello, Department of
Mathematics and Statistics, Eastern Kentucky University, 521 Lancaster Avenue,
Richmond, KY 40475-3102 (e-mail: pat.costello@eku.edu, fax: (859) 622-3051)

NEW PROBLEMS 928 - 936

928. Proposed by José Luis Dı́az-Barrero, School of Civil Engineering, Barcelona
Tech - UPC, Barcelona, Spain.
Solve in the set of positive integers the following equation: x2 + y2 = 137(x− y).

929. Proposed by José Luis Dı́az-Barrero, School of Civil Engineering, Barcelona
Tech - UPC, Barcelona, Spain.
In how many ways can the rational 2025

2024 be written as the product of two rational
numbers of the form (n+1)

n , where n is a positive integer?

930. Proposed by Mathew Cropper, Eastern Kentucky University, Richmond, KY.
The Mycielski construction is done to a finite simple graph G producing a graph
M(G) as follows: set the vertex set of G to be {v1,v2, . . . ,vk} , then add a set of ver-
tices {u1,u2, . . . ,uk} and one more vertex w. Set ui to be adjacent to every vertex in
G to which vi is adjacent and make w adjacent to every vertex in {u1,u2, . . . ,uk} .
Note that the set of vertices {u1,u2, . . . ,uk} is an independent set [Introduction to
Graph Theory, West, pg. 205]. Let Mn(G) denote the graph obtained from a given
finite simple graph G by applying the Mycielski construction n times. Determine
a formula for the number of edges in the graph Mn(G).
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931. Proposed by Richard Hasenauer, Eastern Kentucky University, Richmond,
KY.
Prove that 7! divides n7−14n5 +49n3−36n for all positive integers n.

932. Proposed by Tom Richmond, Western Kentucky University, Bowling Green,
KY.
If a and b are distinct square-free natural numbers and c and d are nonzero rational
numbers, find necessary and sufficient conditions for c

√
a+d

√
b to be a nonzero

rational number.

933. Proposed by Tom Richmond, Western Kentucky University, Bowling Green,
KY.
For cube-free integers a,b > 1 and nonzero rationals c,d, show that c 3

√
a+ d 3

√
b

is rational if and only if a = b and c =−d.

934. Proposed by John Wilson, recently retired from Centre College, Danville, KY.
A Squarely puzzle is a logic puzzle played on a 5×5 grid. The solution requires
that the digits 1 through 9 be placed in the grid with two rules:

1. No digit appears more than once in any row, column or diagonal;

2. the 25 cells must contain exactly 3 copies of 8 of the digits and one copy of
the ninth digit.

You are given the five digits of each row, column and diagonal.

Row Column Diagonal
13458 12459
12369 34689 \12589
24569 35678
24568 12569 \35689
13789 12348

Get 10 free puzzles at squarelypuzzle.com.
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935. Proposed by the editor.
The binomial transform of sequence a0,a1,a2, . . . ,an is sequence b0,b1,b2, . . . ,bn

where

bk =
k

∑
i=0

(−1)i
(

k
i

)
ai

Starting with sequence a0 = 1,a1 =−2,a2 = 4,a3 =−8,a4 = 16, find b4.

936. Proposed by the editor.
A pair of numbers (A,M) is called amicable when σ(A)−A=M and σ(M)−M =
A where σ(n) is the sum of all positive divisors of n. The smallest amicable pair
is (220,284) which was known to Pythagoras.
42303388539096114596805661394194053 is one member of a previously-unknown
amicable pair. Find the other member.

SOLUTIONS TO PROBLEMS 911 - 919

Problem 911. Proposed by Daniel Sitaru, “Theodor Costescu” National Eco-
nomic College, Drobeta Turnu – Severin, Romania.
Solve for real numbers:{

2sinx+1 = 2siny+2sinz

(sinx+ siny− sinz)2 +(sinx− siny+ sinz)2 +1 = sinx+ siny+ sinz.

Solution by Brian Beasley, Simpsonville, SC.

Let a = sinx,b = siny, and c = sinz. Then the first equation yields c = a−b+ 1
2 ,

so substituting into the second equation produces(
2b− 1

2

)2

+

(
2a−2b+

1
2

)2

+1 = 2a+
1
2
.

This equation in turn is equivalent to 4a2+(−8b)a+(8b2−4b+1) = 0. Then we
obtain

a = b±
√
−4b2 +4b−1

2
.

Since −4b2 +4b−1 =−(2b−1)2 and a is real, we conclude that b = 1
2 and thus

(sinx,siny,sinz) = (a,b,c) = (1
2 ,

1
2 ,

1
2). Hence each of x,y, and z must be in the set{

π

6
+2π n : n ∈ Z

}
∪
{

5π

6
+2π n : n ∈ Z

}
∪
{

π

2
± π

3
+2π n : n ∈ Z

}
.

Also solved by Kee-Wai Lau, Hong Kong, China; and the proposer.
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Problem 912. Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stan-
ciu, “George Emil Palade” School, Buzǎu, Romania.
Solve in real numbers the following equation:

x2−5x−2
√

x−2+7+ log2
x2−5x+8√

x−2
+ log3

x2−5x+8
2
√

x−2
= 0.

Solution by Brian Beasley, Simpsonville, SC.

For x > 2, let f (x) = x2−5x−2
√

x−2+7 and g(x) = x2−5x+8√
x−2

. Then

f ′ (x) = 2x−5− 1√
x−2

and g′ (x) = (x−3)(3x−4)
2(x−2)3/2 .

Thus g′(x) < 0 for 2 < x < 3 and g′(x) > 0 for x > 3 so g is decreasing on (2,3)
and increasing on (3,∞). Similarly, for 2 < x < 3,

2x−5 < 1 <
1√

x−2

and for x > 3,

2x−5 > 1 >
1√

x−2
,

so f is also decreasing on (2,3) and increasing on (3,∞). Since p(x) = log2 x and
q(x) = log3 x are increasing on (0,∞), the function

h(x) = f (x)+ log2 g(x)+ log3
g(x)

2

is decreasing on (2,3) and increasing on (3,∞). Finally, since h(3) = 0, we con-
clude that the unique real solution of the given equation is x = 3.

Also solved by Kee-Wai Lau, Hong Kong, China; and the proposers.

Problem 913. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzǎu, Romania.

Find lim
n→∞

((
π2

6 −
n
∑

k=1

1
k2

)
∗ exn

)
where xn =

n
∑

k=1

1
k .

Solution by Seán Stewart, King Abdullah University, Saudi Arabia.

Denote the limit to be found by L. Recalling the definitions for the nth harmonic
number Hn =∑

n
k=1

1
k and the generalized nth harmonic number of order two H(2)

n =

∑
n
k=1

1
k2 , in terms of these two numbers the limit can be expressed as

= lim
n→∞

[(
π2

6
−H(2)

n

)
eHn

]
.
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From the asymptotic expansions for Hn and H(2)
n as n→ ∞, namely

Hn = log(n)+ γ +
1

2n
− 1

12n2 +O
(

1
n4

)
,

and

H(2)
n =

π2

6
− 1

n
+

1
2n2 +O

(
1
n3

)
,

where γ denotes the Euler–Mascheroni constant, for the exponential term in the
limit we have

eHn = exp
[

log(n)+ γ +
1
2n
− 1

12n2 +O
(

1
n4

)]
= neγexp

[
1

2n
− 1

12n2 +O
(

1
n4

)]
= neγ

[
1+

1
2n

+O
(

1
n2

)]
.

The limit may therefore be written as

L = lim
n→∞

[{
1
n
− 1

2n2 +O
(

1
n3

)}
∗neγ

{
1+

1
2n

+O
(

1
n2

)}]
= eγ lim

n→∞

[{
1− 1

2n
+O

(
1
n2

)}
∗
{

1+
1

2n
+O

(
1
n2

)}]
= eγ lim

n→∞

[
1+O

(
1
n2

)]
= eγ ,

which is the required value for the limit.

Also solved by Kee-Wai Lau, Hong Kong, China; Henry Ricardo, Westchester
Area Math Circle, Purchase, NY; and the proposers.

Problem 914. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzǎu, Romania.
Compute lim

n→∞
n n
√
(2n−1)!!Fn sin 1

n2 where Fn is the nth Fibonacci number.

Solution by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

It is well-known that lim
n→∞

n
√

Fn = lim
n→∞

Fn+1
Fn

= 1+
√

5
2 and n2 sin 1

n2 =

(
sin 1

n2

)
(1/n2)

→ 1 as

n→ ∞. Now we show that
n
√

(2n−1)!!
n → 2

e as n→ ∞ :
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(2n−1)!! =
2n!
2nn!

⇒ (2n−1)!!∼ 2nnn+1/2

en by Stirling

⇒ n
√
(2n−1)!!∼ 2n

e

⇒
n
√
(2n−1)!!

n
∼ 2

e
.

Therefore,

n
√

(2n−1)!!Fnsin
1
n2 =

n
√
(2n−1)!!

n
∗ n
√

Fn ∗
(
sin 1

n2

)( 1
n2

)
→ 2

e
∗ 1+

√
5

2

=
1+
√

5
e

= 1.1905.

Also solved by Kee-Wai Lau, Hong Kong, China; Seán Stewart, King Abdullah
University, Saudi Arabia; and the proposers.

Problem 915. Proposed by Toyesh Prakash Sharma (student), Agra College,
Agra, India.
Evaluate the following integral:∫

ln(1+ x) · (ex +
1
ex )dx +

∫ 1
x+1

· (ex− 1
ex )dx.

Solution by Daniel Vacaru, National Economic College, Piteşti, Romania.

We write

∫
ln(1+ x)

(
ex +

1
ex

)
dx+

∫ 1
x+1

(
ex− 1

ex

)
dx

=
∫

ln(1+ x)
(

ex +
1
ex

)
dx+

∫
[ln(1+ x)]′

(
ex− 1

ex

)
dx

=
∫

ln(1+ x)
(

ex +
1
ex

)
dx+ ln(x+1)

(
ex− 1

ex

)
−
∫

[ln(1+ x)]
(

ex− 1
ex

)′
dx
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=
∫

ln(1+ x)
(

ex +
1
ex

)
dx+ ln(x+1)

(
ex− 1

ex

)
−
∫

[ln(1+ x)]
(

ex +
1
ex

)
dx

= ln(x+1)
(

ex− 1
ex

)
+C.

Also solved by Brian Beasley, Simpsonville, SC; Alexia Lorenzo and Diego Ve-
lazco (students) and Angel Plaza, Universidad de Lad Palmas de Gran Canaria,
Spain; Henry Ricardo, Westchester Area Math Club, Purchase, NY; Etisha Sharma,
Agra College, Agra, India; Seán Stewart, King Abdullah University, Saudi Ara-
bia; and the proposer. [Note: Mathematica will compute this integral.]

Problem 916. Proposed by Raluca Maria Caraion and Foricǎ Anastase, “Alexan-
dru Odobescu” High School, Lehliu-Garǎ, Cǎlǎraşi, Romania.

Find: Ω = lim
p→∞

1
pa ·

p
∑

m=1

m
∑

n=1

n
∑

k=1

k2

2k2−2nk+n2 .

Solution by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

First we note the symmetry:

n

∑
k=1

k2

2k2−2nk+n2 =
n

∑
k=0

k2

2k2−2nk+n2 =
n

∑
k=0

(n− k)2

2k2−2nk+n2

which yields

n

∑
k=1

k2

2k2−2nk+n2 =
1
2

n

∑
k=0

k2 +(n− k)2

k2 +(n− k)2 =
n+1

2
.

Then using familiar formulas for ∑ j and ∑ j2, we obtain

m

∑
n=1

n

∑
k=1

k2

2k2−2nk+n2 =
1
2

m

∑
n=1

(n+1) =
m(m+3)

4

and

p

∑
m=1

m

∑
n=1

n

∑
k=1

k2

2k2−2nk+n2 =
1
4

p

∑
m=1

(m2 +3m)

=
1
4

(
p(p+1)(2p+1)

6
+

3p(p+1)
2

)
=

p(p+1)(p+5)
12

.
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It follows that

Ω = lim
p→∞

p3−a

12

(
1+

6
p
+

5
p2

)
.

This is ∞ for a < 3, 1
12 for a = 3, and 0 for a > 3.

Also solved by Seán Stewart, King Abdullah University, Saudi Arabia; and the
proposers.

Problem 917. Proposed by Marian Ursǎrescu, “Roman Voda” College, Roman,
Neamt, Romania, and Floricǎ Anastase, “Alexandru Odobescu” High School,
Lehliu-Garǎ, Cǎlǎraşi, Romania.
Let (an)n≥1,(bn)n>1 be two sequences of real numbers defined by

an =

n∫
1

[
n2

x

]
dx; b1 > 1, bn+1 = 1+ log(bn)

where [*] denotes the greatest integer function. Find L = lim
n→∞

an·log n√bn
lognn .

Solution by Albert Stadler, Herrliberg, Switzerland.

∫ n

2

⌊
n2

x

⌋
dx =

n2−1

∑
m=n

∫ n2
m

n2
m+1

⌊
n2

x

⌋
dx

=
n2−1

∑
m=n

m
(

n2

m
− n2

m+1

)
= n2

n2−1

∑
m=n

1
m+1

= n2 (Hn2−Hn) ,

where Hn is the nth harmonic number. It is well-known that the asymptotic of the
harmonic numbers is Hn = logn+ γ + O

(1
n

)
,n→ ∞. Hence

an = n2 logn+O(n) ,n→ ∞.

Let cn = logbn. Then c1 > 0 and cn+1 = log(1+ cn)≤ cn. So (cn) is a monotoni-
cally decreasing sequence of positive numbers which tends to a limit c≥ 0. That
limit equals 0, for

c = lim
n→∞

cn+1 = lim
n→∞

log(1+ cn) = log(1+ c)

implies c = 0. We have

1
2
− x

12
≤ x− log(1+ x)

x log(1+ x)
≤ 1

2
, x≤> 0.
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To prove these two inequalities we replace x by ey−1 and use Taylor’s expansion
of the exponential function. We then see that

x− log(1+ x)− x log(1+ x)(1/2− x/12)

= ey−1− y− 7
12

y(ey−1)+
1
12

y(e2y− ey)

=−1+ ey − 5y
12
− 2eyy

3
+

1
12

e2yy

=
∞

∑
k=4

(
1+

(2k−1−8)k
12

)
≥ 0

and

x log(1+ x)−2(x− log(1+ x)) = y(ey−1− y)

= 2+ y−2ey + yey

=
∞

∑
k=3

yk

k!
(−2+ k)> 0.

Hence

1
2
− ck

12
≤ ck− log(1+ ck)

ck log(1+ ck)
=

ck− ck+1

ckck+1
=

1
ck+1

− 1
ck
≤ 1

2
.

We sum over k from k = 1 to k = n−1 and get

1
2
(n−1)− 1

12

n−1

∑
k=1

ck ≤
1
cn
− 1

c1
≤ 1

2
(n−1)

which is equivalent to

1
n
2 −

1
2 +

1
c1

≤ cn ≤
1

n
2 −

1
2 +

1
c1
− 1

12

n−1
∑

k=1
ck

However ∑
n−1
k=1 ck = o(n), since cn tends to 0. Thus cn = 2

n(1 + o(1)) and we
conclude that

lim
n→∞

an log( n
√

bn)

logn
= lim

n→∞

ancn

n logn
=

(n2 logn+O(n))(2
n)(1+o(1))

n logn
= 2.

Also solved by Kee-Wai Lau, Hong Kong, China; Henry Ricardo, Westchester
Area Math Circle, Purchase, NY; and the proposers. [It was pointed out that this
problem appeared as #5728 in School Science and Mathematics Journal.]
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Problem 918. Proposed by Seán Stewart, King Abdullah University of Science
and Technology, Saudi Arabia.

If k > 0, evaluate
1∫
0

log(1+xk+x2k)
x dx.

Solution by Kee-Wai Lau, Hong Kong, China

Denote the integral by I. We show that I = π2

9k . By substituting x = y1/k, we obtain

I =
1
k

∫ 1

0

log(1+ y+ y2)

y
dy =

1
k
(I1− I2),

where

I1 =
∫ 1

0

log
(
1− y3

)
y

dy and I2 =
∫ 1

0

log(1− y)
y

dy

Substituting y = z
1
3 in I1, we obtain I1 =

1
3 I2. Hence I = − 2

3k I2. It is well known
that I2 = −π

6
2. This gives the result.

Also solved by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain;
and the proposer.

Problem 919. Proposed by the editor
Find the error in the following proof: We want to find lim

n→∞

4n

3n . This is an ∞

∞
form

so we can apply L’Hopital’s Rule. Let L = lim
n→∞

4n

3n . Then

L = lim
n→∞

4n

3n = lim
n→∞

4n · ln4
3n · ln3

by L’Hopital’s Rule

= lim
n→∞

4n

3n lim
n→∞

ln4
ln3

= L · ln4
ln3

.

Subtracting L from both sides gives, 0= L ·( ln4
ln3−1) but ln4

ln3−1 is not 0. Therefore
L = 0.

Solution by Carl Libis, Columbia Southern University, Orange Beach, AL.

L is infinity and subtracting infinity from infinity does not give 0, This is the same
error as

2∗∞ = ∞

2∗∞−1∗∞ = ∞−∞ = 0

(2−1)∗∞ = 0

Since 2-1 is not 0, ∞ = 0

Other suggested errors contributed by by Brian Beasley, Simpsonville, SC; Henry
Ricardo, Westchester Area Math Circle, Purchase, NY; and Seán Stewart, King
Abdullah University, Saudi Arabia.
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Kappa Mu Epsilon News

Edited by Mark Hughes, Historian
Updated information as of March 2024

News of chapter activities and other noteworthy KME events should be sent to

Mark Hughes, KME Historian
Frostburg State University

Department of Mathematics
Frostburg, MD 21532

or to
mhughes@frostburg.edu

Chapter News

AL Theta – Jacksonville State University
Chapter President – Nicholas Covalsen; 339 Total Members
Other Fall 2023 Officers: Adam Parton, Vice President; Jacob Skipper, Secretary;
Lucas Saone, Treasurer; Dr. David Dempsey, Corresponding Secretary; and Dr.
Jason Cleveland, Faculty Sponsor.
The Alabama Theta chapter met at least monthly in person during Fall 2023 and
elected new officers during the first meeting in September. Highlights included a
trivia night in October (prepared by our officers) and an ice cream social to relax
after the last day of classes in December. We look forward to our spring initiation
ceremony on March 8 and hopefully travelling to a regional convention.

AR Beta – Henderson State University
Chapter President – Alex Hunter; 74 Total MembersValerie Grigar, Treasurer
Other Fall 2023 Officers: Kristen Harper, Vice President; Trenton Moore, Secre-
tary; Valerie Grigar, Treasurer; Catherine Leach, Corresponding Secretary and
Faculty Sponsor.

CT Beta – Eastern Connecticut State University
Corresponding Secretary and Faculty Sponsor – Dr. Mehdi Khorami; 553 Total
Members

CT Gamma – Central Connecticut State University
Corresponding Secretary – Gurbakhshash Singh ; 78 Total Members
Other Fall 2023 Officer: Nelson Castaneda, Faculty Sponsor.

GA Zeta – Georgia Gwinnett College
Chapter President – Edgar Derricho; 69 Total Members
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Other Fall 2023 Officers: Gabriel Amat, Vice President; Matt Elenteny, Secre-
tary; Dr. Jamye Curry Savage, Corresponding Secretary and Faculty Sponsor;
and Dr. Livy Uko, Faculty Sponsor.

GA Theta – College of Coastal Georgia
Chapter President – Justin Von Gartzen; 31 Total Members; 4 New Members
Other Fall 2023 Officers: Andrea Olvera, Vice President; Zach Atkinson, Secre-
tary; Casey Griffin, Treasurer; Aaron Yeager, Corresponding Secretary and Fac-
ulty Sponsor.
Over the Fall Semester the Georgia Theta Chapter of Kappa Mu Epsilon inducted
four new members and we had two meetings.
New Initiates –Ansley Simpson, Faith Highland, Noah English, and Alexander Salgado.

IA Alpha – University of Northern Iowa
Chapter President – Grace Croat; 1119 Total Members; 6 New Members
Other Fall 2023 Officers: Quinn Robinson, Vice President; Krista Zimmer, Sec-
retary; Rachel Wohlgemuth, Treasurer; and Dr. Mark D. Ecker, Corresponding
Secretary and Faculty Sponsor.
Twelve student members of KME and three faculty members met on Wednes-
day, December 6, 2023 in Wright Hall for our Fall KME meeting/banquet. Isabel
Harms presented her senior seminar project entitled “An Analysis of the Meteoro-
logical Effect on PM 2.5 Concentrations in Davenport, Iowa” and six new student
members were initiated at our meeting.

IA Gamma – Morningside University
Chapter President – Isaiah Hinners; 445 Total Members
Other Fall 2023 Officers: Kelsey Schieffer, Vice President and Secretary; Fred
Lageschulte, Treasurer; and Dr. Eric Canning, Corresponding Secretary and Fac-
ulty Sponsor.
There were no new initiates in Fall 2023, as we plan on having an initiation cer-
emony this Spring. Our KME math club met 6 different evenings during the Fall
semester. At these meetings, we had one guest speaker, we watched the movie
Jerry & Marge Go Large, designed a math club t-shirt, carved pumpkins for Hal-
loween, and had a couple of game and pizza nights.

IL Zeta – Dominican University
Corresponding Secretary and Faculty Sponsor – Mihaela Blanariu; 461 Total
Members
We have not initiated any new members in fall 2023.

IL Theta – Benedictine University
Corresponding Secretary and Faculty Sponsor – Manmohan Kaur; 302 Total
Members
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IL Kappa – Aurora University
Chapter Presidents – Daniel Chacon, Samantha Zielinski; 97 Total Members
Other Fall 2023 Officers: Ethan Odean, Vice President; Brigid Redmond-Mattucci,
Secretary; Emily Pastor, Treasurer; Lindsey Hill, Corresponding Secretary and
Faculty Sponsor.
This fall, Illinois Kappa hosted a faculty panel, a board game event, and an es-
cape room event. At the end of the semester, our chapter and the Department of
Mathematics held two final exam student sessions for all mathematics students at
Aurora University.

IN Alpha – Manchester University
Chapter President – Jonah Richards; 575 Total Members
Other Fall 2023 Officers: Morgan Chupp, Vice President; Michael DeBartolo,
Secretary; Zach Hood, Treasurer; Tim Brauch, Corresponding Secretary and Fac-
ulty Sponsor.
Due to some sabbaticals, retirements, and covid, our club faded for a few years.
However, we have a strong group of sophomore students who are very excited to
revive the club. Our first meeting of the resurrected club is happening in mid-
February. While our numbers are currently small, we are experiencing renewed
interest in majoring (or at least minoring) in mathematics. For our first semester
back, the focus is awareness and growth. We are going to find who is eligible for
membership in KME and have some initiation ceremonies. Our current officers
meet the criteria for initiation but haven’t been inducted yet.

IN Beta – Butler University
Chapter President – Evan Blom; 452 Total Members
Other Fall 2023 Officers: Jenna Lane, Vice President; Dylan Laudenschlager,
Sarah Moore, Secretaries; Rasitha Jayasekare, Corresponding Secretary and Fac-
ulty Sponsor.

KME Indiana Beta Chapter (KME
chapter of Butler University, Indi-
anapolis, IN) sponsored one of their
department colloquia in the fall. The
speaker was our very own faculty
member, Dr. Amber Russell, spoke
on “Young Tableaux and Extended
Springer Fibers.” A big shout out to
our KME Indiana Beta Chapter Pres-
ident Evan Blom, Secretaries Dylan
Laudenschlager and Sarah Moore, and
VP Janna Lane for their work for or-
ganizing and hosting the event. The
colloquium poster and a picture of the
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KME club officers with the speaker follow.

From left to right: Evan Blom (president), Dr. Amber Russell, Jenna Lane (VP),
Dylan Laudenschlager (secretary).

KS Alpha – Pittsburg State University
Chapter President – Daniel Crissinger; 2170 Total Members; 5 New Members
Other Fall 2023 Officers: Jonas Garibay, Vice President; Palak Chaudhary, Sec-
retary; Dharani Maddi, Treasurer; Tim Flood, Corresponding Secretary; and
Scott Thuong, Faculty Sponsor.
The Kansas Alpha section continued to hold monthly meetings. In addition to
hosting student presentations, the club also held fun events like math trivia and
playing the card game SET.

KS Beta – Emporia State University
Chapter President – Joe Rose; 1546 Total Members; 2 New Members
Other Fall 2023 Officers: Julia Whitaker, Vice President; Sky Willis, Secretary;
Maliki Mosher, Treasurer; Tom Mahoney, Corresponding Secretary; and Brian
Hollenbeck, Faculty Sponsor.

MD Delta – Frostburg State University
Chapter President – Kaitlyn Custer; 546 Total Members
Other Fall 2023 Officers: Ricky Day, Vice President; Faith James Sergent, Secre-
tary; Dawson Hormuth, Treasurer; Mark Hughes, Corresponding Secretary and
Faculty Sponsor; and Frank Barnet, Faculty Sponsor.
We had monthly meetings during the semester where we enjoyed puzzles, math
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videos, and pizza. We also represented the Mathematics Department at our uni-
versity’s annual Majors Fair.

MI Beta – Central Michigan University
Chapter President – Maleia Thompson; 1762 Total Members
Other Fall 2023 Officers: Julia Savage, Vice President; Matt Sonnenschein, Sec-
retary; Elijah Hayes, Treasurer; and Dmitry Zakharov, Corresponding Secretary
and Faculty Sponsor.
In the fall semester, the Michigan Beta Chapter held six general meetings, a book
sale, and a volunteer tutoring event. The chapter hosted three talks this semester.
One was by Dr. Sivaram Narayan on proofs, and another was by Dr. Yeonhyang
Kim and a graduate student on K-NN regressions in brain imaging. The last talk
was by Dr. Chin-Yi Jean Chan on common zeros of polynomials. Other meetings
included math bingo, math jeopardy, and other math related games.
New Initiates

MO Epsilon – Central Methodist University
Chapter President – Jayklin Smith; 468 Total Members; 7 New Members
Other Fall 2023 Officers: Dillan Kessing, Vice President; Lydia Elder, Secretary;
Ashlee Flowers, Treasurer; and Pam Gordy, Corresponding Secretary and Fac-
ulty Sponsor.

MO Theta – Evangel University
Chapter President – Jack Lin; 305 Total Members
Other Fall 2023 Officers: Ericsson McDermott, Vice President; and Dianne Twig-
ger, Corresponding Secretary; and Jeremy Osborne, Faculty Sponsor.
The Missouri Theta KME chapter met 4 times during the Fall 2023 academic
term. Many students also attended the MAKO conference held by Missouri State
University in November.

MO Kappa – Drury Universityl
Chapter President – Samuel Fullbright; 345 Total Members
Other Fall 2023 Officers: Nicolette Gaston, Vice President; Hannah Ritter, Secre-
tary; Kylie Warden, Treasurer; and Colin T. Baker, Corresponding Secretary and
Faculty Sponsor.
Our chapter now holds weekly meets and is currently exploring the following
topics: group theory and music, provable statements in the game of Hex, multi-
dimensional tic-tac-toe rules, modeling chemical interactions using computer graph-
ics.

MO Mu – Harris-Stowe State University
Corresponding Secretary and Faculty Sponsor – Ann Podleski; 117 Total Mem-
bers; 9 New Members
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Our Fall 2023 induction ceremony was
a highlight for many and included re-
marks from a 2015 alum of HSSU and
member of Kappa Mu Epsilon. (See
flyer and photo.)
New Initiates – Jared Colbert, Jake Davis,
Yasmina Dressen, Annika Fischer, Amani
Griffin, Andrew Lawrence Haines, Morris
Harris III, Jasmin Kraus, and Shayne Mur-
phy.

MO Mu induction

NE Alpha – Wayne State College
Chapter President – Morgan Mitchell; 1069 Total Members
Other Fall 2023 Officers: Madi Minnehan, Vice President; Lacey Cruise, Secre-
tary; Lily Shafer, Treasurer; and Dr. Jenny Langdon, Corresponding Secretary
and Faculty Sponsor.
The Nebraska Alpha chapter of KME met in conjunction with the campus Math
Club every two weeks. The members entered the homecoming banner compe-
tition, hosted a speaker, and held a holiday party. Four new members will be
initiated in January.
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NE Beta – University of Nebraska Kearney
Corresponding Secretary and Faculty Sponsor – Dr. Katherine Kime; 939 Total
Members
Samantha Bowland, initiated Spring 2023, sends her news: “This semester I’m
student teaching in a local high school. I’m helping students with pre-calculus,
geometry, and algebra 2. I’ll be graduating in May with a degree in 6-12 Math
Education.”
Brooke Carlson, who graduated from UNK in Spring 2023, is now pursuing a
master’s degree in Mechanical and Materials Engineering, at the University of
Nebraska Lincoln, with an emphasis in Manufacturing Engineering. Her cur-
rent project concerns “bonding dissimilar materials to increase heat dissipation in
electronic applications” and measuring the bond strengths in the samples she has
created.

NY Nu – Hartwick College
Chapter President – Runyararo Chaora; 357 Total Members
Other Fall 2023 Officers: Dereck Cupernall, Vice President; Jake Thorry, Sec-
retary; Liam Kinnane, Treasurer; and Dr. Min Chung, Corresponding Secretary
and Faculty Sponsor.

NY Xi – Buffalo State University
Corresponding Secretary and Faculty Sponsor – Jane Cushman; 56 Total Mem-
bers; 4 New Members

OK Alpha – Northeastern State University (Spring 2023)
Chapter President – Cade Clickenbeard; 1875 Total Members; 3 New Members
Other Spring 2023 Officers: Parker Childers, Vice President; Mark Buckles, Sec-
retary, Treasurer, Corresponding Secretary, and Faculty Sponsor.
We did an ice cream social in the spring semester of 2023 and used Zoom to con-
nect both the Broken Arrow and Tahlequah campuses so that students and faculty
could communicate across both campuses.

OK Alpha – Northeastern State University
Chapter President – Ryan McAbee; 1880 Total Members; 5 New Members
Other Fall 2023 Officers: Allen Ortiz, Vice President; Mark Buckles, Secretary,
Treasurer, Corresponding Secretary, and Faculty Sponsor.
We held an initiation ceremony on October 26, 2023 using Zoom to connect stu-
dents at our Broken Arrow campus and our Tahlequah campus. Pizza and soft
drinks were provided on both campuses.

PA Pi – Slippery Rock University
Chapter President – Spencer Kahley; 145 Total Members
Other Fall 2023 Officers: Boris Brimkov, Corresponding Secretary; and Amanda
Goodrick, Faculty Sponsor.
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We did not have any activities in Fall 2023, but we talked to students to recruit
them as new members for next semester.

PA Rho – Thiel College
Chapter President – Steven Wright; 148 Total Members
Other Fall 2023 Officers: Emmalee Sheeler, Vice President; Juliana Peace, Secre-
tary; Bailey Stilts, Treasurer; Dr. Russell Richins, Corresponding Secretary; and
Dr. Jie Wu, Faculty Sponsor.
We had several meetings to plan activities and select our chapter t-shirts this year.
Our main activity was the Challenge 24 contest and fundraiser to benefit the local
food bank.

RI Beta – Bryant University
Corresponding Secretary – Prof. John Quinn; 217 Total Members
Other Fall 2023 Officer: Prof. Gao Niu, Faculty Sponsor.
We have our KME nominations and initiation ceremony every spring semester
and we are planning to do the same for spring 2024.

TX Mu – Schreiner University
Chapter President – Jake Plummer; 209 Total Members
Other Fall 2023 Officers: Dom Civello, Vice President; Chris Jones, Secretary;
Rachel Lynn, Corresponding Secretary and Faculty Sponsor.
The Texas Mu Chapter was able to meet in the fall of 2023 for lunch and board
games.

WV Alpha – Bethany College
RCorresponding Secretary and Faculty Sponsor – Adam C. Fletcher; 198 Total
Members
West Virginia Alpha has had a rather quiet fall semester. After our seniors grad-
uated last spring, our membership numbers dropped. We are, however, looking
forward hopefully to this spring’s initiation ceremony. The chapter and our local
Mathematics and Computer Science Club attended a handful of conferences vir-
tually and participated in campus clean-ups and service projects. They are eagerly
anticipating and planning for the annual Math/Science Day Competition for local
high school students on campus in February and providing service to local high
school mathematics competitions in the community.
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Active Chapters of Kappa Mu Epsilon
Listed by date of installation

Chapter Location Installation Date

OK Alpha Northeastern State University, Tahlequah 18 Apr 1931
IA Alpha University of Northern Iowa, Cedar Falls 27 May 1931
KS Alpha Pittsburg State University, Pittsburg 30 Jan 1932
MO Alpha Missouri State University, Springfield 20 May 1932
MS Alpha Mississippi University for Women, Columbus 30 May 1932
NE Alpha Wayne State College, Wayne 17 Jan 1933
KS Beta Emporia State University, Emporia 12 May 1934
AL Alpha Athens State University, Athens 5 Mar 1935
NM Alpha University of New Mexico, Albuquerque 28 Mar 1935
IL Beta Eastern Illinois University, Charleston 11 Apr 1935
AL Beta University of North Alabama, Florence 20 May 1935
AL Gamma University of Montevallo, Montevallo 24 Apr 1937
OH Alpha Bowling Green State University, Bowling Green 24 Apr 1937
MI Alpha Albion College, Albion 29 May 1937
MO Beta University of Central Missouri, Warrensburg 10 Jun 1938
TX Alpha Texas Tech University, Lubbock 10 May 1940
KS Gamma Benedictine College, Atchison 26 May 1940
IA Beta Drake University, Des Moines 27 May 1940
TN Alpha Tennessee Technological University, Cookeville 5 Jun 1941
MI Beta Central Michigan University, Mount Pleasant 25 Apr 1942
NJ Beta Montclair State University, Upper Montclair 21 Apr 1944
IL Delta University of St. Francis, Joliet 21 May 1945
KS Delta Washburn University, Topeka 29 Mar 1947
MO Gamma William Jewell College, Liberty 7 May 1947
TX Gamma Texas Woman’s University, Denton 7 May 1947
WI Alpha Mount Mary College, Milwaukee 11 May 1947
OH Gamma Baldwin-Wallace College, Berea 6 Jun 1947
MO Epsilon Central Methodist College, Fayette 18 May 1949
MS Gamma University of Southern Mississippi, Hattiesburg 21 May 1949
IN Alpha Manchester College, North Manchester 16 May 1950
PA Alpha Westminster College, New Wilmington 17 May 1950
IN Beta Butler University, Indianapolis 16 May 1952
KS Epsilon Fort Hays State University, Hays 6 Dec 1952
PA Beta LaSalle University, Philadelphia 19 May 1953
VA Alpha Virginia State University, Petersburg 29 Jan 1955
IN Gamma Anderson University, Anderson 5 Apr 1957
CA Gamma California Polytechnic State University, San Luis Obispo 23 May 1958
TN Beta East Tennessee State University, Johnson City 22 May 1959
PA Gamma Waynesburg College, Waynesburg 23 May 1959
VA Beta Radford University, Radford 12 Nov 1959
NE Beta University of Nebraska—Kearney, Kearney 11 Dec 1959
IN Delta University of Evansville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood University, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 Apr 1965
AL Epsilon Huntingdon College, Montgomery 15 Apr 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
TN Gamma Union University, Jackson 24 May 1965
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta McDaniel College, Westminster 30 May 1965
IL Zeta Dominican University, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel University, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 Mar 1971
KY Alpha Eastern Kentucky University, Richmond 27 Mar 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 Apr 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
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NY Kappa Pace University, New York 24 Apr 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State University, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sep 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis University, Loretto 14 Sep 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, Brookville 2 May 1983
MO Kappa Drury University, Springfield 30 Nov 1984
CO Gamma Fort Lewis College, Durango 29 Mar 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 Apr 1986
TX Iota McMurry University, Abilene 25 Apr 1987
PA Nu Ursinus College, Collegeville 28 Apr 1987
VA Gamma Liberty University, Lynchburg 30 Apr 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 Apr 1990
CO Delta Mesa State College, Grand Junction 27 Apr 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 Apr 1991
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 Mar 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 Apr 1997
MI Delta Hillsdale College, Hillsdale 30 Apr 1997
MI Epsilon Kettering University, Flint 28 Mar 1998
MO Mu Harris-Stowe College, St. Louis 25 Apr 1998
GA Beta Georgia College and State University, Milledgeville 25 Apr 1998
AL Eta University of West Alabama, Livingston 4 May 1998
PA Pi Slippery Rock University, Slippery Rock 19 Apr 1999
TX Lambda Trinity University, San Antonio 22 Nov 1999
GA Gamma Piedmont College, Demorest 7 Apr 2000
LA Delta University of Louisiana, Monroe 11 Feb 2001
GA Delta Berry College, Mount Berry 21 Apr 2001
TX Mu Schreiner University, Kerrville 28 Apr 2001
CA Epsilon California Baptist University, Riverside 21 Apr 2003
PA Rho Thiel College, Greenville 13 Feb 2004
VA Delta Marymount University, Arlington 26 Mar 2004
NY Omicron St. Joseph’s College, Patchogue 1 May 2004
IL Iota Lewis University, Romeoville 26 Feb 2005
WV Beta Wheeling Jesuit University, Wheeling 11 Mar 2005
SC Epsilon Francis Marion University, Florence 18 Mar 2005
PA Sigma Lycoming College, Williamsport 1 Apr 2005
MO Nu Columbia College, Columbia 29 Apr 2005
MD Epsilon Stevenson University, Stevenson 3 Dec 2005
NJ Delta Centenary College, Hackettstown 1 Dec 2006
NY Pi Mount Saint Mary College, Newburgh 20 Mar 2007
OK Epsilon Oklahoma Christian University, Oklahoma City 20 Apr 2007
HA Alpha Hawaii Pacific University, Waipahu 22 Oct 2007
NC Epsilon North Carolina Wesleyan College, Rocky Mount 24 Mar 2008
NY Rho Molloy College, Rockville Center 21 Apr 2009
NC Zeta Catawba College, Salisbury 17 Sep 2009
RI Alpha Roger Williams University, Bristol 13 Nov 2009
NJ Epsilon New Jersey City University, Jersey City 22 Feb 2010
NC Eta Johnson C. Smith University, Charlotte 18 Mar 2010
AL Theta Jacksonville State University, Jacksonville 29 Mar 2010
GA Epsilon Wesleyan College, Macon 30 Mar 2010
FL Gamma Southeastern University, Lakeland 31 Mar 2010
MA Beta Stonehill College, Easton 8 Apr 2011
AR Beta Henderson State University, Arkadelphia 10 Oct 2011
PA Tau DeSales University, Center Valley 29 Apr 2012
TN Zeta Lee University, Cleveland 5 Nov 2012
RI Beta Bryant University, Smithfield 3 Apr 2013
SD Beta Black Hills State University, Spearfish 20 Sept 2013
FL Delta Embry-Riddle Aeronautical University, Daytona Beach 22 Apr 2014
IA Epsilon Central College, Pella 30 Apr 2014
CA Eta Fresno Pacific University, Fresno 24 Mar 2015
OH Theta Capital University, Bexley 24 Apr 2015
GA Zeta Georgia Gwinnett College, Lawrenceville 28 Apr 2015
MO Xi William Woods University, Fulton 17 Feb 2016
IL Kappa Aurora University, Aurora 3 May 2016
GA Eta Atlanta Metropolitan University, Atlanta 1 Jan 2017
CT Gamma Central Connecticut University, New Britan 24 Mar 2017
KS Eta Sterling College, Sterling 30 Nov 2017
NY Sigma College of Mount Saint Vincent, The Bronx 4 Apr 2018
PA Upsilon Seton Hill University, Greensburg 5 May 2018
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KY Gamma Bellarmine University, Louisville 23 Apr 2019
MO Omicron Rockhurst University, Kansas City 13 Nov 2020
AK Gamma Harding University, Searcy 27 Apr 2021
GA Theta College of Coastal Georgia, Brunswick 22 Oct 2021
CA Theta William Jessup University, Rocklin 17 Oct 2022


